
GESTURAL COMMUNICATION WITH ACCELEROMETER-BASED INPUT DEVICES 
AND TACTILE DISPLAYS 

 

Paul D. Varcholik* 
Institute for Simulation and Training 

University of Central Florida 
Orlando, FL 32826 

 
James L. Merlo, Ph.D. 

LTC, US Army 
US Military Academy 
West Point, NY 10996 

 
 

ABSTRACT 

In this work, we introduce a communication system 
for common military hand and arm gestures which does 
not require a visual connection between the transmitter 
and receivers. Specifically, we present a computer-
mediated gesture recognition system that employs a 
wireless, accelerometer-based input device for collecting 
and classifying one- and two-hand and arm gestures. This 
system delivers message output through an audible 
channel and through a tactile display. The tactile display 
emulates the hand and arm signal’s spatial qualities 
through a sequence of vibrations delivered via an elastic 
belt worn around the soldier’s waist. Initial results show 
promise for this novel way to communicate with 
multimodal messages to augment visual messaging in 
challenging and stressful environments where visual 
messaging may not always be possible.  

1.  INTRODUCTION 

According to an Army field manual (FM 21-60) on 
visual signals, “efficient combat operations depend on 
clear, accurate and secure communication among 
[personnel],” (Department of the Army, 1987). When 
vocal means of communication are inadequate, which is 
often on the noisy battlefield, visual signals can be an 
effective alternative for transmitting orders, information, 
or requests for aid or support (Merlo, Szalma, & Hancock, 
2007). However, these signals require line-of-sight 
between the transmitter and receiver. There are numerous 
situations where a direct visual connection is unavailable 
and there is compromise on the ability to exchange 
critical information through conventional communication 

pathways. Nighttime operations, inclement weather, man-
made and natural terrain obstructions, or concealment 
often impede visual communication attempts. To 
overcome some of these issues, “daisy-chaining” or 
relaying a message is frequently used to send a message 
through a group. However, this method can delay the 
transmission from the original sender to the intended 
recipients. Moreover, visual communication demands a 
focus on the visual modality possibly distracting a 
receiving soldier’s visual attention from alternate, perhaps 
more urgent, tasks.  

In this paper, we introduce a communication system 
for common military hand and arm signals which does not 
require a visual connection between the transmitter and 
receivers. Moreover, the system instantaneously delivers 
the message to all recipients and can do so through a 
variety of output devices. Input gestures, those intended 
for transmission, are accepted through a wireless 
accelerometer-based input device and classified by a 
machine learning algorithm for subsequent delivery. Of 
particular importance for gesture delivery is the 
incorporation of a tactile display, an output device which 
emulates the gesture’s spatial qualities through a sequence 
of vibrations delivered via an elastic belt worn around the 
soldier’s waist. These tactile sequences can be made to 
intuitively mimic the corresponding hand signal, and 
research has shown that tactile communication can 
succeed in conveying information to a recipient even 
under high physiological stress (Merlo, Stafford, Gilson, 
Hancock, 2006). 

This communication system leverages the extensive 
amount of hand and arm signal training currently 
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provided to military personnel. A transmitting user need 
not learn a new set of commands in order to employ this 
platform. Instead, the required hand signals are encoded 
into the gesture recognition system’s machine-learning 
algorithm, providing user-independent and/or user-
specific gesture examples. A message recipient does 
require a training period, when using the tactile display, in 
order to learn which tactile sequences correspond to 
which hand and arm signals. However, research has 
shown that the length of this training period can be 
mitigated if the tactile signals are intuitively mapped from 
their visual-spatial equivalent (Gilson, Redden, & Elliot, 
2007).  

This paper introduces a novel communication system, 
and provides detail on initial experiments and 
applications. Also presented is the software application 
used in training the machine learning algorithm and in 
teaching a recipient on mapping hand and arm signals to 
tactile sequences. Finally, we discuss avenues for moving 
this technology from the lab into the field. Specifically, 
we look at embedding accelerometers into a soldier’s 
gloves and porting the gesture recognition and 
transmission systems to pocket-size computing devices. 

2.  RELATED WORK 

This work combines two technology challenges, one 
involving the input of a communication and one the 
output. Previous studies on communication delivery 
(output) have shown that tactile systems can produce 
relatively stable performance improvements across a 
variety of body orientations even when spatial translation 
is required (Oron-Gilad, Downs, Gilson, and Hancock, 
2007; Terrence, Brill, & Gilson, 2005) and in the presence 
of physiological stress (Merlo, Stafford, Gilson, & 
Hancock, 2006). Additional work on tactile studies can be 
found in (Gilson, Redden, & Elliot, 2007; Prewett, Yang, 
Stilson, Gray, Coovert, & Burke, 2006). 

The system also incorporates audible delivery as an 
alternative to, or reinforcement of, the tactile output 
system. Most of human information processing uses 
multiple sensory inputs, such as the synthesis of visual 
and auditory cues (Hancock, 2005; Spence & Driver, 
2004; Stein & Meredith, 1993). Literature on experiments 
that involve the use of two modalities of information 
presented redundantly each show improvement in the 
areas of accuracy and response time (Spence & Walton, 
2005; Gray & Tan, 2002; Strybel & Vatakis, 2004). 

For processing input, the system centers on a 
computer-mediated gesture recognition system. 
Considerable work has been done in this area, particularly 
since the early 1990s. The Glove-Talk system from Fels 
and Hinton (1993) used an instrumented glove and 
machine learning system to recognize a 203 gesture-to-
word vocabulary. They improved their work in 1996 and 
1998 with the Glove-Talk II system (Fels & Hinton, 1996, 
1998). In addition to glove-based gesture recognition 
systems, much work has been done using computer-vision 
techniques. For example, Binh, Shuichi, and Ejima (2005) 
developed a vision-based recognition system using 
Hidden Markov Models (HMM, a machine learning 
technique). 

Finally, Kratz, Smith, and Lee (2007) created a 
recognition system, similar to the one being presented, 
which uses the Nintendo®  Wiimote and HMM. Our 
system differs in the choice of machine learning algorithm 
and through the extraction of a feature set to describe a 3-
Dimensional gesture created using the Wiimote. 

3.  GESTURE RECOGNITION SYSTEM 

The gesture recognition system is made of three 
primary components: an input device to collect the 
movements of the gesture; a software system to classify 
those movements; and an output device to communicate 
the gesture to a recipient. 

3.1  Input Device 

The system employs an accelerometer-based input 
device for collecting gesture data. Specifically, the 
Nintendo® Wii Remote Controller (Wiimote, see Figure 
1) was chosen as an inexpensive, commercial-off-the-
shelf (COTS) motion controller with 3-axes of input. 
Although initially designed for use on the Nintendo® Wii, 
the Wiimote has been adapted for use on the personal 
computer (PC). The Wiimote connects to a PC wirelessly, 
using the Bluetooth communication protocol. Data can be 
collected from up to four Wiimotes simultaneously. 

The Wiimote sends accelerometer data at a maximum 
frequency of 100Hz. The incoming X, Y, Z floating-point 
values, from the accelerometers, are treated as “point” 
information to represent a position in 3D space. In fact, 
this data is not a true 3D position, and merely indicates 
forces applied to the accelerometers through 
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corresponding motion. These values cannot be made to 
accurately represent a 3D position without an additional 
sensor (e.g. a multi-axis gyro). However, the data still 
yields accurate gesture recognition by treating the data as 
3D positions (drawbacks of this approach are discussed in 
section 4). As such, the movement of the Wiimote can be 
visualized as a connected series of points contained within 
a 3D bounding volume created by the extents of the point 
set. For each sample, the 3D point data is augmented with 
timestamp information to allow for the calculation of 
speed and distance between samples.  

 

 

Figure 1. The Wiimote controller (Troillard, 2008) 
 

3.2  Software 

The software system is organized into two distinct 
components: an underlying library for defining the data 
structures and machine learning algorithms for gesture 
recognition; and a graphical user interface for 
demonstrating the functionality of the system. 

At the heart of the underlying gesture recognition 
library are three data structures: WiimotePoint, Gesture, 
and TrainedGesture. The WiimotePoint object contains 
the raw Wiimote X, Y, Z accelerometer values and 
associated sample timestamp. A collection of 
WiimotePoints are used to construct a Gesture object – 
which is an unlabeled representation of a complete one-
handed gesture. It is a Gesture object that is passed to a 
machine learning algorithm for classification (labeling). 
Gesture objects expose a set of 29 features extracted from 
the set of contained WiimotePoint objects which are used 
as inputs into a machine learning algorithm for training 

and subsequent classification. These features were 
derived from Rubine’s work on 2D symbol recognition 
(1991) and are listed in Table 1. These features are a key 
component of the software system, and differentiate this 
element of the work from that of Kratz et al. (2007). 

Table 1.  Feature set 

Feature Description 

Duration Total duration of the gesture. 

Max X, Y Z  The maximum x, y, and z accelerometer 
values (3 features). 

Min X, Y, Z The minimum x, y, and z accelerometer 
values (3 features). 

Mean X, Y, Z The mean x, y, and z accelerometer values 
(3 features). 

Median X, Y, Z The median x, y, and z accelerometer 
values (3 features). 

Bounding 
Volume Length 

The length of the diagonal of the bounding 
box created from the extents of the x, y, 
and z values. 

Starting Angle 

The angle created between the first and 
third samples points (3 features measuring 
the sine and cosine of the angle within the 
XY plane and sine within the XZ plane).  

First-Last Angle 

The angle created between the first and last 
samples points (3 features measuring the 
sine and cosine of the angle within the XY 
plane and sine within the XZ plane). 

Total Angle 
Traversed 

Summation of the angles between each 
pair of points (2 features measuring the 
XY and XZ planes). 

Total Angle 
Traversed 
Absolute 

Summation of the absolute values of the 
angles between each pair of points (2 
features measuring the XY and XZ 
planes). 

Total Squared 
Angle Traversed 

Summation of the squared values of angles 
between each pair of points (2 features 
measuring the XY and XZ planes). 

First-Last Point 
Distance 

The distance between the starting and 
ending points. 

Total Gesture 
Distance 

Summation of the distance between each 
pair of points. 

Max Acceleration 
Squared 

The squared value of the maximum 
acceleration detected between each pair of 
points. 

 

A TrainedGesture object is a labeled collection of 
Gesture objects, where the gestures are data samples used 
for training a machine learning algorithm. When 
recognizing an unlabeled gesture, the set of known 
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TrainedGesture objects is the source for classification. All 
of these data structures – WiimotePoint, Gesture, and 
TrainedGesture – are serializable for creating reusable 
sets of trained gesture data. Importantly, no calculated 
data (e.g. the features extracted from the Gesture objects) 
are included in the serialization. This allows 
modifications to such calculation within the software 
library without invalidating previously created data sets. 

Machine learning algorithms complete the gesture 
recognition library, and are the elements that perform the 
actual recognition. The library specifies a software 
interface for implementing various algorithms. In this 
fashion the library allows for multiple algorithms to be 
implemented and used against the same type of data. To 
date, we have experimented with a linear classifier, 
AdaBoost, and an Artificial Neural Network. 

The second software component, the graphical user 
interface, is presented in Figure 2. 

 

Figure 2. Gesture training user interface 

This component is used to collect gesture samples, 
train personnel on recognizing tactile display output, and 
for validating the performance of the recognition system 
through visual feedback of the classification process. At 
the bottom of the user interface, there are status indicators 
on which Wiimotes are connected and the X, Y, Z 
accelerometer data being read from them. The Left Hand, 
Right Hand, and Combinations tabs are used for training 
the gestures that will subsequently be used for 
classification. Combination gestures (both left and right 
hand) can be trained with both hands simultaneously. 

Previously trained and serialized gesture sets can be 
loaded through the File menu.  

Classification tests are conducted through the 
corresponding tab which presents an animated 3D model 
of a soldier that mimics the classified gesture. Audible 
and tactile feedback is also generated during 
classification. The animations, sounds, and tactile 
sequences are pre-programmed and mapped to the trained 
gestures. Any newly trained gestures that are not mapped 
to an animation, sound, or tactile sequence, simply 
present the name (label) of the gesture upon classification. 
When training or classifying a gesture, the user indicates 
the start and end of the gesture by pressing the Wiimote’s 
trigger button (B button). This is the same technique for 
both right and left handed gestures (combination gestures 
require pressing both left- and right-hand trigger buttons). 

The graphical user interface need not be the software 
system employed by soldiers during actual transmission 
and receipt of a visual signal. Indeed, for dismounted 
infantry requiring lightweight and easily transported 
technologies, a more appropriate system would run on a 
mobile computing platform and would not provide visual 
feedback as with the animated 3D model. A simple 
network protocol has been developed for transmitting the 
gestures over UDP/IP. The transmitting end provides 
audible feedback of the recognized gesture being 
transmitted while the receiving end allows for both 
audible and tactile delivery of the gesture. 

Although initially developed on a personal computer 
running Microsoft Windows, the software described in 
this section could be adapted to operate on mobile 
platforms and over alternate electronic communication 
protocols. 

3.3  Ouput Device 

There are two output devices supported by the 
system: audible speakers and a tactile display. Audible 
speakers relay a sound file mapped to the corresponding 
gesture. This sound file need not simply be the label of 
the gesture, and could be used to communicate a more 
complex message. 

For conditions where audio messages are not 
appropriate, the system incorporates a tactile display. The 
vibrotactile actuators (tactors) in this system are 
manufactured by Engineering Acoustics, Inc. They are 
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essentially acoustic transducers that displace 200-300Hz 
sinusoidal vibrations onto the skin. Their 17gm mass, 
when properly loaded on the skin, is sufficient for 
activating the skin’s tactile receptors. The tactor’s 
contactor is 7mm, with a 1mm gap separating it from the 
tactor’s aluminum housing. The tactor is a tuned device, 
meaning it operates well only within a very restricted 
frequency range, in this case approximately 250Hz. The 
tactile display itself is an elastic belt like device with eight 
tactors attached (see Figure 3). The belt is made of elastic 
and high quality cloth similar to the material used by 
professional cyclists. When stretched around the body and 
fastened, the wearer has an actuator over the umbilicus 
and one centered over his or her spine in the back. The 
other six actuators are equally spaced, three on each side, 
for a total of eight (Cholewiak, Brill, & Schwab, 2004). 

 

Figure 3.  Three tactile display belt assemblies 

The tactors are operated using a Tactor Control Unit 
(TCU) which is a computer-controlled driver/amplifier 
system that switches each tactor on and off as required. 
This device is shown on the left side of the tactile display 
belts in Figure 3. The TCU weighs 1.2lbs independent of 
its power source and is approximately one inch thick. This 
device connects to a power source with one cable, to the 
display belt with the other, and uses Bluetooth technology 
to communicate with the computer driven interface. 
Tactile messages were created for the chosen gesture set 
(discussed in section 4) where the vibrations approximate 
the patterns presented with the visual signal.  

4.  DISCUSSION 

We have experimented with this system using a 
number of gesture sets and the machine learning software 
system has demonstrated a high level of accuracy. In an 
informal user study with 5 participants, we experimented 
using 7 gestures from the Army field manual (FM 21-60) 
on visual signals: Attention, Disregard, Halt, Increase 

Speed, Mount Up, Start Engines, and Stop Engines. The 
results of this study show a 96% classification accuracy 
when supplying 30 training samples per gesture to the 
linear classifier. The system had accuracy above 94% 
with as few as 10 samples per gesture. These results are 
comparable to those found in Kratz’ HMM 
implementation where a maximum 95% accuracy was 
reported (Kratz et al. 2007). Future work is required to 
verify and formalize these results, and to make 
recommendations on machine learning algorithms and 
training sizes for optimal results.  

Apart from the technical details of the system 
described in the previous sections, the focus of this 
communication platform is on delivering visual signals 
without a visual connection between transmitter and 
recipients. In internal demonstrations the system has 
operated as described – exhibiting its capability in 
recognizing pre-trained gestures and delivering both 
audible and tactile output to a recipient. Moreover, we 
have experimented with delivering gestures to multiple 
recipients simultaneously. This has likewise been very 
successful, but there are outstanding research questions on 
techniques for selecting individuals for specific delivery. 
At present, delivery of a message is broadcast to all 
recipients connected to the same electronic network (e.g. 
UDP broadcast). However, we have yet to exercise the 
full system in the field to determine its efficacy at 
communicating between individuals or groups. Note that 
the tactile display has been studied extensively in its 
ability to successfully convey information, but not as part 
of the complete communication system presented here 
(see Gilson, Redden, & Elliot, 2007). 

For many applications, the Wiimote is not the right 
choice for a deployment of this system. It is used here as a 
proof-of-concept chosen for its low cost, and availability. 
We believe our system is adaptable for any 3-axis 
accelerometer-based input device or even to a more 
capable device (e.g. a device with augmenting 
gyroscopes) which could provide genuine position data. 
With the Wiimote, there are ambiguities in the data that 
affect the recognition accuracy of gestures – particularly 
for gestures that are similar. We suspect that our system 
has an upper-limit to the number of gestures that can be 
accurately classified. Further study is required to 
determine what that upper-bound is, but a more capable 
input device would likely provide better performance. 
Additionally, differentiating similar static poses is not 
possible with the Wiimote. For example, the data sampled 
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from the Wiimote, when held at shoulder height, cannot 
be distinguished from the same orientation held above the 
users head. The Wiimote must be in motion, and those 
motions must be somewhat different for each gesture, in 
order to accurately train a machine learning algorithm. 

A final note on the Wiimote is on the choice to use 
the trigger button as the gesture start/end indicator. An 
alternate technique is to continuously sample the data 
stream looking for recognized gestures. The linear 
classifier requires approximately 10ms to recognize a 
gesture using our 7 gesture data set at 30 samples per 
gesture. With such high performance, it is feasible to 
continuously query the data stream, but it is likely that 
this will recognize gestures prematurely. For example, the 
system is capable of distinguishing a half circle, from a 
full circle. If the classifier continuously queries the data 
stream, it might classify the gesture as a half circle before 
the user completed the gesture. There are ways to mitigate 
this result and further study is recommended to determine 
the most appropriate technique for starting/ending a 
gesture. This is a significant consideration for input 
devices that may not include a button-style triggering 
mechanism. An accelerometer-instrumented glove, for 
example, would need a non-button-style triggering 
technique to prevent unintended transmissions and 
accurate recognition. Pinch gloves and pre- and post- 
gestures are two potential alternatives for triggering 
gesture start/end. 

The question of learning complex tactile 
communication signals, especially for use in adverse or 
unusual circumstances is an important future issue. The 
tactile system performs a redundancy gain as the receiver 
of the signal now has an additional means of receiving 
communication if the user can hear the signal as well. 
Initial testing seems to result in superior performance for 
tactile communication and traditional hand and arm 
signals combined. Stimulus response compatibility will 
have to be analyzed carefully to maximize performance as 
we consider different ways to input and relay visual 
signals. However, when individuals are faced with 
extreme challenges and the traditional sources of 
information are either diminished or eliminated 
altogether, the system described in this paper provides an 
important alternative communication channel and one that 
may be exploited.  
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